Site Access Plan

<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Facilities</th>
<th>Participants</th>
<th>Specifications/Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submission of proposal for use of MUST-SIM facility</td>
<td>NEES Consortium Review Panel</td>
<td>NEES Consortium</td>
<td>• NEES Consortium is expected to review and approve proposals; consultation with Ops Manager on site capabilities and site availability are welcome.</td>
</tr>
</tbody>
</table>
| Site Scheduling | MUST-SIM site | Operations Manager | • Only proposals approved by the NEES Consortium will be normally be considered.
 • Scheduling an experiment is anticipated to be a multi-step process including training, simulation, pre-experiment checkout, and actual experiment time (see site access procedure). |
| Access to the Lab during the execution of the tests (shared-use) and during non-operational time | NSEL Laboratory – MUST-SIM site | MUST-SIM staff and external researchers, students, and staff | • MUST-SIM staff must be properly trained.
 • External researchers, student, and staff must receive training to use the MUST-SIM facility; prior to receiving appropriate training, they must be accompanied by a qualified technician.
 • Safety equipment must be available and worn. |
| Access to student shop facilities | NSEL Laboratory | External Researchers, students, visitors | • All users of the student shop must be trained by qualified NSEL Laboratory personnel. |
| Education and training using computer simulation | MUST-SIM Computational Simulator | All researchers and students wishing to conduct experiments at the MUST-SIM facility | • A computational simulator that can emulate the salient features of the MUST-SIM LBCBs.
 • Provides an essential tool for education and training.
 • Facilitate a deeper understanding of the capabilities of the MUST-SIM facility.
 • Can be used at the conceptual phase to assess feasibility of proposed experiments. |
| Education and training using physical simulation | MUST-SIM 1/5th- Scale Physical Simulator | All researchers and students wishing to conduct experiments at the MUST-SIM facility | • A 1/5th-scale strong wall and several 1/5th-scale LBCBs that replicate the behavior of the full-scale LBCBs are available.
 • Provides an important education and training tool.
 • Facilitate a deeper understanding of the capabilities of the MUST-SIM facility.
 • Can be used to assess feasibility of experiments. |
| Pre-experiment check-out Procedure | Computational and scale models of the MUST-SIM Facility | All researchers wishing to conduct experiments at the MUST-SIM facility | • A two-stage checkout process must be followed prior to having an experiment schedule at the MUST-SIM Facility:
 • A proposed experimental concept must be demonstrated using the MUST-SIM computational simulator
 • A proposed experiment must be mocked up using MUSTSIM 1/5th-Scale Physical Simulator
 • At the completion of the pre-experiment check-out procedure, the design of an experiment can be submitted to the Op Manager for compliance and scheduling.
 • Experiments deemed to be unusual by the Op Manager will be referred to the MUST-SIM Executive Committee. |
<table>
<thead>
<tr>
<th>Type of Activity</th>
<th>Facilities</th>
<th>Participants</th>
<th>Specifications/Limitations</th>
</tr>
</thead>
</table>
| On-line training courses and manuals | Internet-based education and training materials on the MUST-SIM Web Site | All researchers and students wishing to conduct experiments at the MUST-SIM | • All potential users of the MUST-SIM facility must successfully complete the online course and receive certification by the MUSTSIM training personnel.
• Site access plan and procedures must be stated and followed.
• Safety rules and instructions, as well as evacuation in case of dangers and hazards, will be presented.
• Computer will be available for on-line training in the MUST-SIM Room. |
| Preparation of the samples, pre-calibration of the experiments | NSEL Student and Instrumentation Laboratory | All researchers and students wishing to conduct experiments at the MUST-SIM | • The student and instrumentation workshop will be available Mon-Fri (8 am – 4 pm) to students and external researchers.
• Available instrumentation and devices will be accessible to researchers for MUST-SIM activities.
• A safety and instruction course (3 hours) will be provided to the researchers and must be completed prior to the use of the facility.
• The shop manager will be responsible for permissions, access, use, etc..
• An area of the MUST-SIM Lab will be assigned to the research unit for storage, preparation of the samples and pre-calibration of the personal instrumentation (operational time restricted to university business hours only). |
| Data acquisition and analysis; metadata and repository training | NSEL Laboratory and NEES room | All researchers and students wishing to conduct experiments at the MUST-SIM | • Specific PC acquisition systems will be provided for the experiments, but devoted to data acquisition and storage.
• The NEES room servers cannot be used as instruments for data analysis.
• NEES computers will be available for data repository and transition of the sampled records to NEES data and metadata formats (appropriate training will be available).
• External researchers should consider the use of a personal computer, owned by the direct investigator, for the data processing and subsequent analysis of the results. |
| Open-house days | NSEL Laboratory – MUST-SIM facility and MUST-SIM room | General Public | • The Senior Lab Assistant 1 will present the facility and its characteristics, including physical simulations and demonstrations.
• Brochures and lab manuals will be available. |